Truncated regularized Newton method for convex minimizations

نویسندگان

  • Yingjie Li
  • Dong-Hui Li
چکیده

Recently, Li et al. (Comput. Optim. Appl. 26:131–147, 2004) proposed a regularized Newton method for convex minimization problems. The method retains local quadratic convergence property without requirement of the singularity of the Hessian. In this paper, we develop a truncated regularized Newton method and show its global convergence. We also establish a local quadratic convergence theorem for the truncated method under the same conditions as those in Li et al. (Comput. Optim. Appl. 26:131–147, 2004). At last, we test the proposed method through numerical experiments and compare its performance with the regularized Newton method. The results show that the truncated method outperforms the regularized Newton method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Regularized Newton Method for Unconstrained Convex Optimization∗

We consider a global complexity bound of regularized Newton methods for the unconstrained convex optimization. The global complexity bound is an upper bound of the number of iterations required to get an approximate solution x such that f(x)− inf f(y) ≤ ε, where ε is a given positive constant. Recently, Ueda and Yamashita proposed the regularized Newton method whose global complexity bound is O...

متن کامل

Regularized Newton Methods for Convex Minimization Problems with Singular Solutions

This paper studies convergence properties of regularized Newton methods for minimizing a convex function whose Hessian matrix may be singular everywhere. We show that if the objective function is LC2, then the methods possess local quadratic convergence under a local error bound condition without the requirement of isolated nonsingular solutions. By using a backtracking line search, we globaliz...

متن کامل

Regularized Newton method for unconstrained convex optimization

We introduce the regularized Newton method (rnm) for unconstrained convex optimization. For any convex function, with a bounded optimal set, the rnm generates a sequence that converges to the optimal set from any starting point. Moreover the rnm requires neither strong convexity nor smoothness properties in the entire space. If the function is strongly convex and smooth enough in the neighborho...

متن کامل

Stochastic Variance-Reduced Cubic Regularized Newton Method

We propose a stochastic variance-reduced cubic regularized Newton method for non-convex optimization. At the core of our algorithm is a novel semi-stochastic gradient along with a semi-stochastic Hessian, which are specifically designed for cubic regularization method. We show that our algorithm is guaranteed to converge to an ( , √ )-approximately local minimum within Õ(n/ ) second-order oracl...

متن کامل

A regularized simplex method

In case of a special problem class, the simplex method can be implemented as a cutting-plane method that approximates a polyhedral convex objective function. In this paper we consider a regularized version of this cutting-plane method, and interpret the resulting procedure as a regularized simplex method. (Regularization is performed in the dual space and only affects the process through the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2009